

ACC 参訪報告

熊名琛、殷偉賢醫師 /振興醫院 心臟內科

心臟超音波專欄

ACC 參訪報告

/熊名琛 P.1

回顧出席美國心臟超音 波學會年會

/徐粹烈 P.5

心臟超音波於介入性心 導管術所扮演的角色 /王主科 P.7

未來還有很長的路 /梁馨月 P10

乳房超音波檢查經驗談 /李茂宏 P12

年會資訊

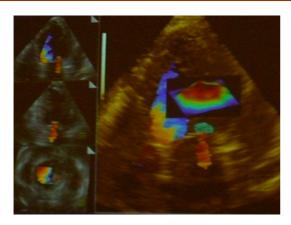
超音波優秀論文獎 P14 年會活動剪影 P15 Cardiology) 會議是行之有年、聞名全球的國際型會議,每年都吸引數以萬計來自各國對心臟方面有興趣的人前往參加。今年是第五十九屆,為期三天(3/14~3/16)的ACC會議於美國Atlanta舉

行,ACC一向致力於提升心血管方面之教育,並著重終身學習與實際實行。這次與會人數似乎較往年少,但議程內容依舊精彩,舉凡心血管相關的主題應有盡有,會場外也是各家廠商林立,積

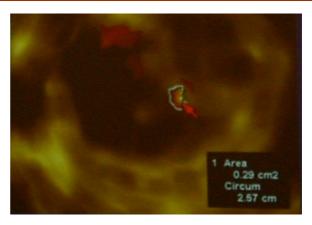
極為近期開發出來新的軟硬體做解說。值得一提的是, 我的恩師 Dr. Nanda 亦在此次 會議中獲頒成就獎的殊榮!

ACC會議中探討的主題

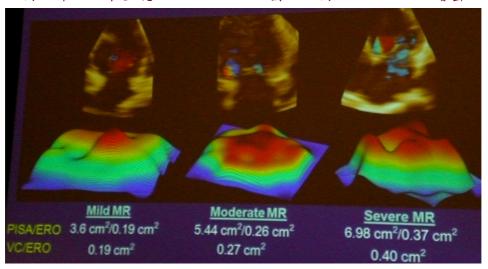
包羅萬象,大方向上主要有 imaging. ischemia. lifelong. quality. vascular. valvular. arrhythmias 等,每個大方向中又有許許多多的主題,舉例來說 imaging 中,涵蓋了多種心臟影像的探討與應用,而其中有數場與心臟超音波相關的演講十分精彩,特別提出來與大家分享。


1. Automated 3D

Characterization and Quantification of Proximal Isovelocity Surface Area and Vena Contracta of Mitral Regurgitation by Real-Time Volume Color Doppler Imaging 現階段二尖瓣逆流(MR)的三 維杜卜勒彩色血流圖受限於 逆流的幾何形狀以及需截取 多個心跳作影像重組,所以 難以用PISA來量化血流圖與 有效逆流洞口面積 (Effective Regurgitant Orifice, ERO)。隨 著科技不斷的進步,現在已 經有發展出三維影像僅需單 一心跳即可截取,使得自動 化定量的用途更廣!本篇的 作者發展出自動定量立體彩色血流圖的PISA表面積,並且與 EROA 和 vena contracta (vc) 作比較,如圖一、二、三。


這是一個新視野,但仍 在剛起步的階段需要更多的 研究。

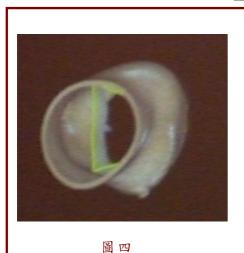
Aortic Valve and Root in Aortic Regurgitation Using Volume 3D Transesophageal Echocardiography


這個主題是用三維立體 經食道超音波的影像自動模 擬主動脈瓣的形態,自動定 量的模型可以用來計算構造

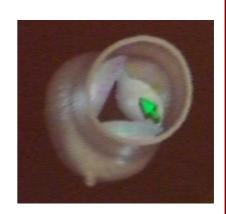
圖一、用三維PISA來呈現EROA

圖二、用 vena contracta 繪出 EROA

圖三、 PISA 與 Vena Contracta 各自和 EROA 作比較


上的有效逆流面積 (ERO, 圖四)、主動脈瓣根部的徑 長 (Root diameter,包括 Annulus, Sinus of Valsava, Sinotubular Junction 等,圖 五)、內接合線距離 (inter-commissural distance, ICD, 圖六)、葉緣長度

(Leaflet Edge Length, 📙 七)、接合處高度


如此的主動脈瓣模型能 提供構造上的ERO大小可以 與彩色杜卜勒血流圖作比 較,而且對於主動脈瓣的測 量參數亦會較二維超音波來 得準確。

3. Does 3D Transesophageal Imaging Add Value to Transcatheter Aortic Valve Implantation? Experience in 150 Cases

作者分別利用二維經食

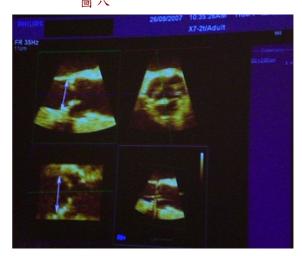
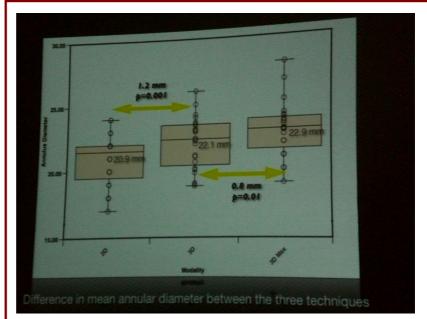

圖六

圖 五

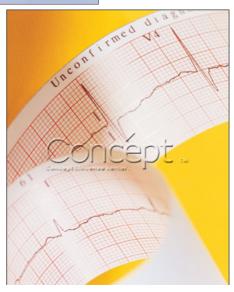
圖八

圖九、2D TEE


圖十、3DTEE

道超音波與三維經食道超音 波量測主動脈瓣的 annulus 長度做比較(如圖九和圖 十),統計結果如圖十一。

本篇的結論是3D TEE較 2D TEE的量測更為精準。


 會獲益良多,也幫助各位在 心臟方面的知識技能與成就

更上層樓!敬祝大家,平安喜樂!

圖十一、左方為 2D 測量值,中間為 3D 測量值,右方為 3D 量測到的最大值

